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SUMMARY

In this paper we extend the non-staggered version of the central NT (Nessyahu–Tadmor) scheme to
the balance laws with geometrical source term. This extension is based on the source term evaluation
that includes balancing between the �ux gradient and the source term with an additional reformu-
lation that depends on the source term discretization. The main property of the scheme obtained by
the proposed reformulation is preservation of the particular set of the steady-state solutions. We verify
the improved scheme on two types of balance laws with geometrical source term: the shallow water
equations and the non-homogeneous Burger’s equation. The presented results show good behaviour of
the considered scheme when compared with the analytical or numerical results obtained by using other
numerical schemes. Furthermore, comparison with the numerical results obtained by the classical central
NT scheme where the source term is simply pointwise evaluated shows that the proposed reformulations
are essential. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: balance laws; central schemes; exact C-property; shallow water equations; non-homo-
geneous Burger’s equation

1. INTRODUCTION

In recent years several numerical schemes have been developed for the numerical treatment
of the hyperbolic balance laws. Firstly, one of the most often approaches for solving balance
laws was using the fractional step method [1] where �rst the homogeneous conservation law
with some standard numerical scheme for hyperbolic system was solved and then at the next
step the source term was incorporated. This technique is quite simple to use, but there are
several cases when it is not very e�ective. The di�culties arise when the source term is sti�
or when it is of geometrical type. For that cases, some other, more successful approaches
have been developed. There are several papers that consider sti� source terms, for example
References [2, 3], in which some classical numerical schemes have been extended to the
balance laws such that the source term was evaluated implicitly.
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The geometrical source terms arise for example if we consider �ow in a channel with
bottom topography and=or with varying width or in a nozzle with varying cross-sectional
area. These source terms contain a spatial derivative of the geometrical properties of the
channel or the nozzle, respectively. The evaluation of the geometrical source term must be
done in a quite di�erent way in comparison with the sti� source term evaluation. Namely,
it turned out that a successful way for approximating balance law with geometrical source
term is to develop the numerical scheme, which is able to capture some steady-state solutions
with better accuracy. The mentioned approach was �rstly used by Berm�udez and V�azquez in
References [4, 5], where they extended the �nite volume schemes to the shallow water equa-
tions. Moreover, they introduced the notion of the C-property for the schemes that preserve
the quiescent �ow in the shallow water case exactly. In their work the numerical source term
was evaluated such that the upwinding technique was included and additionally the balancing
between the �ux gradient and the source term was achieved. A similar approach was then
used in Reference [6] where the second order �nite volume type scheme were extended to
the shallow-water equations with an addition of spatially varying �ux function. The other type
of numerical schemes for the shallow water equations have been developed by
LeVeque [7]. His idea was based also on the balancing, but he introduced the modi�cation
of the Riemann solver, which results with the scheme that captures quasi-steady states well.
Furthermore, in Reference [8] the surface gradient method was used to obtain a numerical
scheme with the C-property. The kinetic schemes [9] and the central-upwind schemes [10]
have been also developed for the shallow water equations. Recently, in [11] an algebraic
technique was presented for balancing �ux gradients and source terms when applying Roe’s
approximate Riemann solver in �nite volume schemes.
The goal of our work is to extend the non-staggered central NT scheme to the bal-

ance laws with geometrical source term. We consider here two cases: the non-homogeneous
Burger’s equation and the shallow water equations. The base of this extension lies in preserv-
ing some steady-state solutions with the numerical scheme.
In the �rst section a general formulation of the non-staggered central NT scheme for the

balance law is given. In the second section the numerical scheme is completed with the exact
de�nitions for all the terms arising in the numerical scheme, which depend on the particular
balance law. First, we consider the non-homogeneous Burger’s equation and then the shal-
low water equations. In order to develop numerical scheme that preserves some steady-state
solution, an additional reformulation of the presented scheme is introduced. We refer to this
reformulation as to the interface type reformulation, while the �nally obtained scheme we call
the balanced central NT scheme. The introduced reformulation depends on the discretization
of geometrical part of the source term. In the last section the obtained numerical scheme
is veri�ed on both considered balance law systems. With the presented test problems we
show that numerical results obtained with the balance central NT scheme are very robust and
accurate, while on the other hand, the non-balanced version of the scheme produces quite
large numerical errors in most of the cases.

2. CENTRAL NT SCHEME FOR BALANCED LAWS

In this section we give a brief overview of the central NT scheme with the extension to the
balance laws. More detailed descriptions of the classical central approach can be found in
various papers (see for example References [1, 12, 13]).
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We consider the one-dimensional balance law system

@tu+ @xf(u)= g(u; x) (1)

with a geometrical type source term g(u; x). According to the staggered mesh used in the
numerical scheme development, we introduce two sets of cells: the non-staggered cells Ii=
[xi−1=2; xi+1=2], i=0; : : : ; N and the staggered cells Ii+1=2 = [xi; xi+1], i=0; : : : ; N−1. We consider
the uniform mesh with a cell size �x, therefore de�nitions xi= i�x and xi+1=2 = xi + �x=2
are used. The appropriate notations for the average value of the solution at time t= t n are
used: 	uni denotes the average value of the solution over the non-staggered cell Ii and 	u

n
i+1=2

is used for the average value over the staggered cell Ii+1=2. The integration of (1) over the
control volume Ii+1=2 × �t n; t n+1� yields to

	un+1i+1=2 = 	uni+1=2 − 1
�x

[∫ t n+1

t n
f(u(xi+1; t)) dt−

∫ t n+1

t n
f(u(xi; t)) dt

]

+
1
�x

∫ t n+1

t n

∫ xi+1

xi
g(u(x; t); x) dx dt (2)

The terms on the right hand side of (2) have to be numerically approximated. We suppose
that the non-staggered values 	uni are known and start with the classical Nessyahu–Tadmor
central approach. It is based on the piecewise linear representation of the solution on each
grid cell, i.e.

u(x; t n)=
∑
i
( 	uni + u

′
i(x − xi))�Ii(x) (3)

where �Ii(x) is the indicator function of interval Ii. The slope u
′
i inside the cell is computed by

using some slope limiting procedure [1]. A standard choice used also in this paper is minmod
limiter

u′
i =MM

(
ui+1 − ui
�x

;
ui − ui−1
�x

)
(4)

where the minmod function MM is applied to each of the vector component. It is de�ned by

MM(a; b)=

{
smin(|a|; |b|) if s=sgn(a)= sgn(b)

0 otherwise
(5)

The staggered average 	uni+1=2 is now evaluated by averaging the piecewise linear represen-
tation (3) over the cell Ii+1=2, i.e.

	uni+1=2 =
1
2
( 	uni + 	uni+1) +

�x
8
(u′
i − u′

i+1) (6)

This approximation is second order accurate. To obtain a second order scheme, the integrals
in (2) must be evaluated with the same accuracy. First, the �ux integral is approximated by
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using the one-point Gauss quadrature formula
∫ t n+1
t n f(u(xi; t)) dt ≈ �xf(un+1=2i ). The predictor

values un+1=2i are evaluated by using relation

un+1=2i = uni +
�t
2�x

(−f′
i + g

n
i�x) (7)

obtained by the combination of the Taylor expansion and relation (1). Here f′
i approximates

the spatial derivative of the �ux. As in Reference [12] the quantity f′
i is evaluated by using

a slope limiting procedure. More precisely, we apply the relation

f′
i =A( 	u

n
i )u

′
i (8)

and therefore the values u′
i that are already evaluated in (3) can be used. The term gni can

be evaluated pointwise or some other approximation can be applied, as we will see in the
proceeding of this work.
If the approximation of the source term integral in (2) is de�ned with g(un+1=2i ; un+1=2i+1 )�x�t,

the corrector step of the numerical scheme is obtained

	un+1i+1=2 = 	u
n
i+1=2 − �t

�x
(f(un+1=2i+1 )− f(un+1=2i )) +�tg(un+1=2i ; un+1=2i+1 ) (9)

The temporal and the spatial accuracy of order two will be achieved if the de�nition of the
term g(un+1=2i ; un+1=2i+1 ) is done appropriately. This term will be de�ned later, for each considered
balance law separately.
We must emphasize that only explicit discretizations of the source term are used in this

paper. It is a known fact that the implicit treatment of the source term insures that the
numerical scheme becomes more stable. However, this approach is crucial for the cases when
the source term is sti�. The nature of the geometrical source term allows us to use the explicit
approximations.
Finally, the non-staggered version of the central NT scheme is obtained as described in

Reference [12]. To eliminate staggering, the non-staggered average values 	un+1i at time t n+1

can be obtained by averaging the staggered values following the next procedure. First, the
calculated staggered cell averages are used for the construction of a piecewise linear repre-
sentation

ũ(x; t n+1)=
∑
i
( 	un+1i+1=2 + u

′
i+1=2(x − xi+1=2))�Ii+1=2 (x) (10)

Here, the staggered cell derivatives u′
i+1=2 are computed by applying a slope limiting proce-

dure to the staggered values 	un+1i+1=2. The values 	u
n+1
i are then obtained by averaging linear

interpolant (10) over the cell Ii, i.e.

	un+1i =
1
�x

[∫ xi

xi−1=2

ũ(x; t n+1) dx+
∫ xi+1=2

xi
ũ(x; t n+1) dx

]

=
1
2
( 	un+1i−1=2 + 	un+1i+1=2)− �x

8
(u′
i+1=2 − u′

i−1=2) (11)

The complete time step of the non-staggered central NT scheme is illustrated in Figure 1.
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Figure 1. Non-staggered central NT scheme.

We must emphasize that all the computations in the described procedure are de�ned
componentwise and this is the main advantage of the central over the upwind type schemes.
The extension of the central NT scheme to the two-dimensional problems is also possible.

The corresponding non-staggered central NT scheme for the homogeneous hyperbolic system
is given in Reference [12], while its extension to the two-dimensional balance law could be
done in a similar way as it is just described for the one-dimensional case.

3. BALANCED CENTRAL NT SCHEME FOR THE NON-HOMOGENEOUS
BURGER’S EQUATION AND FOR THE SHALLOW WATER EQUATIONS

3.1. Non-homogeneous Burger’s equation

First, we consider the non-homogeneous Burger’s equation with a geometrical source term as
de�ned in Reference [2]

@tu+ @x
u2

2
= − z′(x)u (12)

Since the source term depends explicitly on the given function z(x) it is obviously of the
geometrical type. For the complete de�nition of the numerical scheme presented in the pre-
vious section it remains to determine the numerical source terms in both, the predictor and
the corrector step of the scheme. We de�ne these terms according to the most important
property we want to be satis�ed by our scheme—the property of preserving steady-state
solutions. When we consider the steady-states of system (1), the time evolution is equal zero,
so the �ux gradient and the source term are in balance. It would be perfect if the balancing
could be obtained on numerical level too. For the numerical scheme that is consistent with
some steady-state solutions we say it has the exact conservation property. According to the
balancing that should be obtained in that case, we refer to the scheme developed in this paper
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as to the balanced central NT scheme. For the di�erential equation (12) the only possible
steady-state solution is given with

u+ z=const (13)

To achieve the mentioned property we evaluate the source term in the predictor step (7) by
taking into account the derivative of the variable used in relation (8). More precisely, we
propose to take

gni = g
n
i; L + g

n
i; R (14)

where

gni; L= s
2
i
1− si
2

guni

(
−zi − zi−1

�x

)
; gni; R= s

2
i
1 + si
2

guni

(
−zi+1 − zi

�x

)

and

si=




−1 if u′
i = u

n
i − uni−1

1 if u′
i = u

n
i+1 − uni

0 if u′
i =0

(15)

The de�ned parameter si depends on the side that is chosen when the variable and the �ux
derivatives are evaluated. In this way expression (14) includes the source term upwinding and
moreover, the obtained source term discretization is in balance with the �ux gradient. On the
other hand, for the source term in the corrector step (9) we use just a centred discretization,
i.e.

g(un+1=2i ; un+1=2i+1 )=
un+1=2i + un+1=2i+1

2

(
−zi+1 − zi

�x

)
(16)

Let us consider now the steady-state (13). If we include de�nitions (14) and (16) in (7)
and (9), and suppose that the discrete steady-state condition uni + zi=const is valid, we can
easily see that our numerical scheme reduces to

un+1=2i = uni (17)

and

	un+1i+1=2 = 	u
n
i+1=2 (18)

Hence we can conclude that the time evolution of the variable is equal zero in the steady-
state case in the both steps of the de�ned scheme. For the schemes that do not use the
staggered mesh this would be enough to preserve the steady-states. But here some additional
reformulations of the procedure of passing from the original to the staggered mesh and vice
a versa must be introduced such that the steady-state is preserved. This �nal step of the
considered scheme is presented in Section 3.3.
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3.2. Shallow-water equations

Now we apply the non-staggered central NT scheme to the shallow water equations. In the
shallow water case the balance law (1) is de�ned with

u=

(
h

hv

)
; f=

(
hv

hv2 + 1
2gh

2

)
; g=

(
0

gh(− dz
dx )

)
(19)

Here h= h(x; t) is the water depth, v= v(x; t) is the water velocity, z= z(x) is the bed level
and g is acceleration due to gravity.
As in the Burger’s equation, the crucial property we want to be satis�ed when the central

NT scheme is applied to the shallow water equations is the property of preserving some
steady-state solutions. More precisely, we want to preserve the quiescent �ow

h+ z=const; v=0 (20)

By using the terminology given in Reference [4] this is called exact C-property.
We proceed in the similar way as in the Burger’s case. Following the idea of decomposing

the source term in an upwind manner, we again propose to use the expression

gni = g
n
i; L + g

n
i; R (21)

where

gni; L= s
2
i
1− si
2

(
0

−ghni zi−zi−1

�x

)
; gni; R= s

2
i
1 + si
2

(
0

−ghni zi+1−zi�x

)

The parameter si in the ith cell is here de�ned with

si=




−1 if h′
i = h

n
i − hni−1

1 if h′
i = h

n
i+1 − hni

0 if h′
i =0

(22)

For the term g(un+1=2i ; un+1=2i+1 ) we propose to use just the centred approximation

g(un+1=2i ; un+1=2i+1 )=


 0

g h
n+1=2
i +hn+1=2i+1

2 (− zi+1−zi
�x )


 (23)

When considering the quiescent �ow case, the variable, the �ux, and the source term vector
reduce to

u=

(
h

0

)
; f=

(
0

1
2 gh

2

)
; g=

(
0

gh(− dz
dx )

)
(24)

With choices (21) and (23) under the quiescent �ow condition (20), we can easily see that
expressions (7) and (9) reduce to

un+1=2i = uni (25)
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and

	un+1i+1=2 = 	u
n
i+1=2 (26)

Again, an additional reformulation that preserves the quiescent �ow when passing from the
non-staggered values to the staggered ones and then back is needed. We present it in the next
section.
The part of the source term that concerns friction forces is omitted in (19). It should be

added to the second component of the source term in the form −M 2v|v|=h4=3 where M =M (x)
denotes Manning’s friction factor. However, this term is not geometrical and we evaluate it
just pointwise. The other possible approaches and the additional analysis in connection with
that term are out of the scope of this paper.

3.3. The interface type reformulation

Since the nature of the functions z(x) that appear in the source terms is similar, the refor-
mulation of the scheme will be explained in common for both considered balance laws. The
presented reformulation is based on the discretization of the function z(x). Here we suppose
the values zi−1=2 and zi+1=2 on the non-staggered cell boundaries are known for i=1; : : : ; N −1
and then take a linear approximation inside each non-staggered cell, i.e.

z(x)= zi +
zi+1=2 − zi−1=2

�x
(x − xi) (27)

In particular, at the cell centers the relation zi= zi−1=2 + zi+1=2=2 is valid.
The reformulation is done as follows. The corrections we propose are connected with the

evaluation of u′
i when passing to the staggered mesh and with the evaluation of the term u

′
i+1=2

that appears in the procedure of returning to the non-staggered mesh.
Notice �rst that when the quiescent �ow in the shallow water case is considered, the second

component of the variable vector is equal zero, so the modi�cations are needed just for the
�rst component, i.e. for the variable h. Therefore, the purpose of our reformulation is to
preserve the variable u in the Burger’s case and the variable h in the shallow-water case. We
denote these variables with w, i.e. w= u in the �rst case and w= h in the second case. The
values that are constant at the considered steady-states in both the cases are then equal w+ z,
so we de�ne

W =w + z

When the central NT scheme is used, the variable w and the function z are supposed to be
linear inside each cell. We propose to determine the linearization of the variable w indirectly
by prescribing �rst a linearization of the value W (x) and then by using a relation

w(x)=W (x)− z(x)

The linearization W (x) inside a cell Ii is obtained by applying a slope limiting procedure on
the cell values Wi. Thus, for x ∈ Ii we have

W (x)=Wi +W ′
i (x − xi) (28)
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The derivation of the original variable can be obviously calculated as

w′
i =W

′
i − zi+1=2 − zi−1=2

�x
(29)

To obtain the derivations over the staggered mesh the following procedure is proposed.
Because function z is not linear inside the non-staggered cell, the values Wi+1=2 are not constant
over the numerical domain. Instead we de�ne the point values that should be used for the
linear approximation over the staggered mesh with

W̃i+1=2 =wi+1=2 + z̃i+1=2 (30)

Here the term z̃i+1=2 = zi+1=2− 1
2 (zi+1=2− (zi+ zi+1)=2) is a corrected z value that arises because

of nonlinearity over the staggered cell Ii+1=2. Now the discrete derivatives W̃
′
i+1=2 are derived

using the standard slope limiting procedure and the staggered values {W̃i+1=2}. Finally, the
relation

w′
i+1=2 = W̃

′
i+1=2 − zi+1 − zi

�x
(31)

is applied.
With the described procedures for determining the corresponding linearizations over the

cells, the improved non-staggered central NT scheme is consistent with all steady-state solu-
tions for the non-homogeneous Burger’s case and with the quiescent �ow in the shallow-water
case. That is proved in the following way.
From relation (26) follows that the staggered values do not change in the time step of

the numerical scheme. Therefore it is enough to prove that the procedure of passing to the
staggered values and then back to the non-staggered ones return us the same values we start
from. We concentrate just on the variable w that covers both cases.
The steady-state condition at the discrete level is equal

Wi= 	wi + zi=const (32)

First, for the staggered values that are obtained from the non-staggered ones by examining
relations (6) and (29) we get

	wni+1=2 =
1
2
( 	wni + 	wni+1) +

�x
8
(w′

i − w′
i+1)

=
1
2
( 	wni + 	wni+1) +

1
8
(W ′

i �x − (zi+1=2 − zi−1=2)−W ′
i+1�x + (zi+3=2 − zi+1=2))

=
1
2
( 	wni + 	wni+1)− 1

2

(
zi+1=2 − zi + zi+1

2

)
(33)

The last equality follows from the fact that W ′
i =W

′
i+1 =0 at the considered steady-state

and additionally by applying the relations zi+1=2 − zi−1=2 = 2(zi+1=2 − zi) and zi+3=2 − zi+1=2 = 2
(zi+1 − zi+1=2).
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Since relations (18) and (26) are valid, the inclusion of (33) in (30) gives us

W̃
n+1
i+1=2 =

	wni + 	wni+1
2

+
zi + zi+1
2

Because of (32), the values W̃
n+1
i+1=2 are equal over the whole numerical domain.

Finally, the non-staggered values are evaluated from (11) by using (31)

	wn+1i =
1
2
( 	wn+1i−1=2 + 	wn+1i+1=2)− �x

8
(w′

i+1=2 − w′
i−1=2)

=
1
2
( 	wn+1i−1=2 + 	wn+1i+1=2)− 1

8
(W̃

′
i+1=2�x − (zi+1 − zi)− W̃ ′

i−1=2�x + (zi − zi−1)) (34)

By including (33) in the above expression and by using the fact W̃
′
i−1=2 = W̃

′
i+1=2 = 0 we obtain

	wn+1i = 	wni

With this we �nish the proof of the consistency with the steady-state cases, so the balanced
central NT scheme is constructed.

4. NUMERICAL RESULTS

In this section we present numerical results obtained with the improved non-staggered central
NT scheme on several test problems for the non-homogeneous Burger’s equation and for the
shallow water equations.

4.1. Non-homogeneous Burger’s equation

This test problem was suggested by Jin [2]. The Burger’s equation (12) is considered on
the domain [0; 10] with the initial condition u(x; 0)=0, x¿0 and the boundary condition
u(0; t)=2, t¿0. Here we test the ability of preserving steady-state for the case of the scalar
balance law in both: continuous and discontinuous z= z(x) function case. The steady-state
analytical solution for the given problem is equal

u=2− z (35)

In the continuous case z(x) is given by

z(x)=

{
cos(�x) if 4:56x65:5

0 otherwise
(36)

while in the discontinuous one

z(x)=

{
cos(�x) if 56x66

0 otherwise
(37)

In Figures 2 and 3 we present results for both cases. We compare with the exact solution
the numerical results obtained with the balanced central NT scheme and with the standard
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Figure 2. Comparison of the solutions in the continuous case, Section 4.1.
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Figure 3. Comparison of the solutions in the discontinuous case, Section 4.1.
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Figure 4. Initial water level for the quiescent �ow test case, Section 4.2.1.

central NT scheme where no reformulations are included and the source term is just point-
wise evaluated. The space step is set to �x=0:1. The exact solution and the numerical one
obtained with the balanced central NT scheme coincide very well. That was what we expect
since the balanced central NT scheme is developed in order to preserve steady-states. On the
other hand the pointwise version of the central NT scheme produces large numerical errors
in both cases.

4.2. Shallow-water equations

4.2.1. A quiescent �ow test proposed by the Working Group of Dam Break Modelling.
Now, we are interested in the quiescent steady state preserving property of our scheme. The
riverbed geometry in this test case is extremely rough, de�ned as proposed by the Working
Group of Dam Break Modelling [4]. The water level is initially de�ned with H =15 m and
water is supposed to be at rest. The riverbed and the initial water level are presented in
Figure 4. In Figures 5 and 6 we can see the improvement of the balanced central NT scheme
over the non-balanced one. The numerical errors that appear when just the pointwise source
term evaluation is used are unacceptably large.

4.2.2. A convergency test over the bed with two bumps. In order to check the accuracy
properties of the developed numerical scheme, we apply it on the steady state problem with
a given constant discharge and a continuous riverbed. Since in the homogeneous case the
balanced central NT scheme is second order accurate, we expect this order is not deteriorated
with the reformulations introduced in this work for the considered balance law.
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Figure 5. Comparison in water level for the quiescent �ow test case at t=100 s, Section 4.2.1.
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Figure 6. Comparison in discharge for the quiescent �ow test case at t=100 s, Section 4.2.1.
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Figure 7. Initial water level for the test problem in Section 4.2.2.

The riverbed is here de�ned with

z(x)=0:2 exp[− 1
2 (x + 1)

2] + 0:3 exp[−(x − 1:5)2] (38)

over the domain [−10; 10]. The left boundary condition is de�ned with the discharge
Q(−10; t)=1 m2=s, while on the right boundary the constant water depth h(10; t)=1 m is
imposed. The initial water level can be evaluated analytically as a stationary solution with
the given constant discharge. This analytical solution is presented in Figure 7 and it should
be preserved when numerical scheme is applied. In Figure 8 we can see that as a mesh is
re�ned the numerical solution converges to the exact one.
Furthermore, in Table I we give the convergency test results. Since the numerical scheme

attains the order of accuracy equal 2, we can conclude that the improved scheme order is not
deteriorated with the reformulation proposed in this work. The CFL coe�cient used in all the
computations is cc� = 0:5.

4.2.3. Tidal wave propagation in a relatively short channel with a continuous bottom. We
consider now an unsteady test problem proposed by Berm�udez and V�azquez [4]. It is used
to establish the correctness of the central NT scheme in the case of a gradually varied �ows.
The tidal wave propagation occurs in the channel with the length L=14000 m and with the
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Figure 8. Comparison in water level for di�erent mesh sizes, Section 4.2.2.

Table I. Accuracy of the central NT scheme, Section 4.2.2.

N L1 error L1 order L∞ error L∞ order

Errors in water level
80 1:78×10−3 1:21×10−2

160 5:63×10−4 1.66 4:77×10−3 1.34
320 1:32×10−4 2.09 1:55×10−3 1.62
40 3:02×10−5 2.13 4:65×10−4 1.74

1280 7:63×10−6 1.98 1:17×10−4 1.98

Errors in discharge
80 9:62×10−4 1:08×10−2

160 2:93×10−4 1.72 5:17×10−3 1.06
320 7:39×10−5 1.99 1:75×10−3 1.56
640 1:80×10−5 2.04 5:01×10−4 1.81
1280 4:45×10−6 2.01 1:25×10−4 2.00

riverbed bottom

z(x)=10 +
4x
L
+ 10 sin

[
�
(
4x
L

− 1
2

)]
(39)
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Figure 9. Water level after t=10 800 s of tidal wave propagation, Section 4.2.3.

The water is initially at rest with constant water level H (x)=60:5m. The boundary conditions
are de�ned with

h(0; t)=H (x) + 4:0− 4:0 sin
[
�
(

4t
86 400

+
1
2

)]
(40)

and

v(L; t)=0 (41)

Equation (40) simulates a tidal wave of 4 m amplitude. Using the asymptotic analysis based
on the small Froude numbers (see Reference [4]), an approximate solution is obtained

h(x; t)=64:5− z(x)− 4:0 sin
[
�
(

4t
86 400

+
1
2

)]
(42)

and

v(x; t)=
(x − L)�
5400h(x; t)

cos
[
�
(

4t
86 400

+
1
2

)]
(43)

In Figure 9 we present results in water level obtained by using a relatively coarse grid with
space step �x=280m at time t=10800 s. The agreement of the asymptotic and nume-
rical solutions is great. Furthermore, the comparison of the velocity pro�les obtained by two
di�erent mesh sizes with the asymptotic one is presented in Figure 10. One can note that the
numerical results are satisfying and obviously converge to the exact solution.
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Figure 10. Comparison of the velocity pro�les with di�erent mesh sizes with the asymptotic solution
after t=10 800 s of tidal wave propagation, Section 4.2.3.

4.2.4. Tidal wave over a rectangular bump. The purpose of this numerical example is to
test the presented numerical scheme for an unsteady problem in the case when discontinuity
in the riverbed appears. The considered problem is taken from [14]. The riverbed is given
with

z(x)=

{
8 if |x − 1500=2|¡1500=8
0 otherwise

(44)

while initially the water level is supposed to be constant and equal 16 m. This initial water
level is presented in Figure 11. The tidal wave incoming from the left boundary, de�ned as
in the previous example with (40), remedies the initially still water. On the right boundary
the water velocity is set to zero just as the Manning friction factor over the complete numer-
ical domain. The computations are performed with the space step �x=7:5 m and cc� = 0:5.
We give the numerical results after t=10800 s. In Figure 12 we compare �rst the balanced
and pointwise central NT scheme. The water level after half-time of the tidal wave period
passes should be equal 20m and that is exactly obtained with the balanced central NT scheme.
The errors again arise when the pointwise scheme is used. Thus, the superiority of the im-
proved scheme is illustrated again.
In order to test the ability of the central NT schemes to achieve proper shape and speed

of a disturbance, we compare the balanced central NT scheme results with an asymptotic
solution evaluated following expression (43), which is valid for this test problem also. The
numerically obtained velocity pro�le at t=10800 s is compared with the asymptotic one in
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Figure 11. Initial water level for tidal wave over a rectangular bump, Section 4.2.4.
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Figure 12. Comparison in water level after t=10 800 s of tidal wave propagation, Section 4.2.4.
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Figure 13. Comparison with an asymptotic solution. Velocity after t=10 800 s
of tidal wave propagation, Section 4.2.4.

Figure 13. The agreement is great. This suggest that the proposed scheme is accurate for tidal
�ow over an irregular bed.

4.2.5. Dam break problem over a continuous riverbed. This is an initial test problem pro-
posed in Reference [2]. We observe here the behaviour of both, balanced and pointwise version
of the central NT scheme on the test problem with discontinuous initial data and continuous
riverbed. The riverbed is given with

z(x)=1:398− 0:347 tanh(8x − 4) (45)

while the initial conditions are

h(x; 0)=

{
1:0 if x60:6

0:2 if x¿0:6
and v(x; 0)=0 (46)

We consider here the spatial domain [0; 1]. In Figure 14 we present the initial water level.
As in the original test problem, the gravitational constant is set to g=1. The computations
are performed with the space step �x=0:01 m and by using cc� = 0:5. The behaviour of the
solution is similar as in the classical dam-break problem: the rarefaction that arises propagates
to the left, while on the right hand side of the initial discontinuity a shock propagating to the
right occurs. The ‘exact’ solution is computed by using balanced �ux limited second order
�nite volume scheme [6] on a very �ne grid with the space step �x=0:0005. The comparison
with the numerical solution obtained by using the balanced central NT scheme on a much
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Figure 14. Initial water level for the dam break problem over a continuous riverbed, Section 4.2.5.

coarser grid with �x=0:01 is then made in Figure 15. Moreover, in Figure 16 we show once
again that the reformulation introduced in the paper is essential. Namely, the results obtained
with the pointwise central NT scheme are completely inaccurate.

4.2.6. LeVeque test example over bump. With this test we check the correctness of the wave
speed propagation of the developed numerical scheme when a small disturbance in the water
level arises. The test problem is suggested by LeVeque [7]. The bottom topography is de�ned
with

z(x)=

{
0:25(cos(10�(x − 0:5)) + 1) if |x − 0:5|¡0:1
0 otherwise

(47)

over the domain [0; 1]. The initial conditions are de�ned with

v(x; 0)=0 and h(x; 0)=

{
1:0− z(x) + � if 0:1¡x¡0:2

1:0− z(x) otherwise
(48)

The two cases are considered: �=0:2 and 0.01. The initial conditions for the �rst test case are
presented in Figure 17. As in Reference [7] we take g=1. A small perturbation that is de�ned
with the initial condition splits into two waves. The �rst wave propagates to the left while the
right one moves over the bump. The �ow in this test case is the quasi-steady state �ow. The
results are shown at time t=0:7 s. We take a space step �x=0:005. The disturbance caused
by the varying riverbed bottom can be clearly seen in Figures 18 and 19. The ‘exact’ solution
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Figure 15. Comparison of the balanced central NT scheme with the ‘exact’ solution in the dam-break
problem. Water level at t=0:25 s, Section 4.2.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

w
at

er
 le

ve
l

Bed

Central NT - balanced

Central NT - pointwise

Figure 16. Water level at t=0:25 s for the dam-break problem, Section 4.2.5.
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Figure 17. Initial water level for the LeVeque test example with �=0:2, Section 4.2.6.
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Figure 19. LeVeque test example with �=0:01. Comparison of water level at t=0:7 s, Section 4.2.6.

is obtained with the third order balanced WENO-LLF scheme [15] on a �ne grid with 10 000
cells. This scheme is used because we know it is high resolution and high order accurate. We
can see that the balanced central NT scheme captures the quasi-steady state very well.

4.2.7. Two test problems for transcritical �ow over a bump. We consider here two cases:
in the �rst a smooth transition occurs while in the second a hydraulic jump arises. The bump
is de�ned with

z(x)=

{
0:2− 0:05(x − 10)2 if 8¡x¡12

0 otherwise
(49)

The computational domain is 25 m long. Depending on the boundary conditions we set, the
�ow becomes supercritical and then it reverses or not to the subcritical.
For the case of the steady transcritical �ow with a smooth transition, a discharge of

1:53 m2=s is imposed on the upstream boundary. With the given discharge the �ow becomes
supercritical over the bump and it remain supercritical downstream of the bump, therefore the
downstream boundary condition is not needed in that case.
To obtain a hydraulic jump, on the upstream boundary the discharge is set to 0:18 m2=s,

while on the downstream boundary a constant water elevation h(25; t)=0:33 m is imposed.
The numerical parameters in both the cases are �x=0:125, and cc� = 0:5. The results are

presented in Figures 20 and 21 for the smooth transition case and in Figures 22 and 23 for
the hydraulic jump case. We can notice that the numerically evaluated water level coincides
quite well with the analytical solution in both cases. The numerical instabilities occur in
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Figure 20. Water level for the test with a smooth transition, Section 4.2.7.
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Figure 21. Discharge for the test with a smooth transition, Section 4.2.7.
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Figure 22. Water level for the test with a hydraulic jump, Section 4.2.7.
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Figure 23. Discharge for the test with a hydraulic jump, Section 4.2.7.
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Figure 24. Water level evolution for the rarefaction waves over a step, Section 4.2.8.

the numerical discharge over the place where the riverbed bump joins with the �at bottom.
The similar phenomenon can be noticed in Reference [8] where the surface gradient method
combined with the MUSCL �nite volume type scheme is used. Hence we think that the
presented numerical errors are the consequence of the linear interpolation procedure used.
Larger numerical errors in the discharge occur at the hydraulic jump. Such a numerical error
at the jump is common for all the known numerical schemes.

4.2.8. Rarefaction over a rectangular bump. This is a test that consists of the two rarefaction
waves, but with an addition of a nontrivial topography. This test problem was proposed in
Reference [15], where it was used to test the behaviour of the numerical scheme over dry
bed. The bottom topography is de�ned with

z(x)=

{
1 if 25=3¡x¡12:5

0 otherwise
(50)

The initial water level height is 10 m, while the initial discharge is

Q(x; 0)=

{−350 if x¡50=3

350 otherwise
(51)

We do not analyse here the in�uence of the dry cells, but we use this test just to illustrate good
behaviour of our schemes in a more complicated water �ow situations. The numerical water
level pro�les at di�erent times are presented in Figure 24. When we compare the obtained
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results with the results presented in Reference [16] we can conclude they coincide very well.
Although the central NT scheme works well on this test example, this is not general for all
the cases where a dry riverbed appears. The numerical treatment of the dry bed needs an
additional attention and requires further study.

5. CONCLUSIONS

In this paper we presented the extension of the non-staggered central NT schemes to the
balance laws with the geometrical source terms. The crucial property we want to achieve
with this numerical scheme is to preserve some steady state solutions. In order to do this
we must consider a particular balance law. Here the complete de�nition of the balanced
scheme is presented for the Burger’s equation and for the shallow-water system. In both cases
the obtained numerical scheme gives very good results in steady and unsteady �ow cases.
The additional extension of the central NT scheme could be connected with numerical handling
of the spatially varied �ux in hyperbolic laws, just as the upwind and high resolution schemes
were extended in the one-dimensional open-channel �ow case [17, 18]. Further work could be
related to the extension of the considered numerical scheme to the one-dimensional sediment
transport equations by following the numerical approach used in Reference [19].
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